Educational Software based on Theorem Prover Technology
Announcing a New Software Generation

Walther Neuper

IICM Institute for Information Systems and Computer Media
Graz University of Technology

Minisymposium at AUSHUN15
“Proving in Math Education at University and at School”
Aug. 26, 2015 Gjör, Hungary
Outline

1. A new generation of educational math software
 Early birds
 Expected features

2. A prototype of the new generation
 Demonstration
 Review of features

3. Discussion
Outline

1. A new generation of educational math software
 Early birds
 Expected features

2. A prototype of the new generation
 Demonstration
 Review of features

3. Discussion
Structured derivation editor with erroneous step marked.
See E-Math Project http://emath.eu/
GeoGebra’s “academic relative”, see prove \{identical \ O_1 \ O_2\} at bottom left.
Socos, Abo Akademi Turku

For software “correct by construction” in education.

\[
\int -q_0 \frac{d}{dx} = c - q_0 \cdot x, \quad \ldots \rightarrow \text{ok},
\]

\[
\int -q_0 \frac{d}{dx} = c - \frac{q_0^2}{2}, \quad \ldots \rightarrow \text{not ok}
\]
1. A new generation of educational math software
 Early birds
 Expected features

2. A prototype of the new generation
 Demonstration
 Review of features

3. Discussion
Expected features

Computer-Theorem-Prover technology supports:

1. interactive, stepwise problem solving
 like traditional paper&pencil work

2. underlying knowledge is transparent
 all math knowledge in traditional notation

3. covers all of (applied) mathematics
 problem classes need formal specification and method

These features shall be demonstrated by ISAC now.
Expected features

Computer-Theorem-Prover technology supports:

1. interactive, stepwise problem solving
 like traditional paper&pencil work

2. underlying knowledge is transparent
 all math knowledge in traditional notation

3. covers all of (applied) mathematics
 problem classes need formal specification and method

These features shall be demonstrated by ISAC now.
Expected features

Computer-Theorem-Prover technology supports:

1. **interactive, stepwise problem solving**
 like traditional paper&pencil work

2. **underlying knowledge is transparent**
 all math knowledge in traditional notation

3. **covers all of (applied) mathematics**
 problem classes need formal specification and method

These features shall be demonstrated by ISAC now.
A new generation of educational math software
Early birds
Expected features

A prototype of the new generation
Demonstration
Review of features

Discussion
Demonstration of the ISAC-prototype
1. A new generation of educational math software
 Early birds
 Expected features

2. A prototype of the new generation
 Demonstration
 Review of features

3. Discussion
Review of features

ISAC demonstrated these features . . .

1. **interactive, stepwise problem solving**
 - like traditional paper&pencil work
 - like learning to play chess on a computer

2. **underlying knowledge is transparent**
 - all math knowledge in traditional notation
 - students can investigate to any depth anytime

3. **covers all of (applied) mathematics**
 - problem classes need formal specification and method
 - e.g. "beding lines", "application of inverse Z-transformation", etc

. . . supported by Computer-Theorem-Prover technology.
Review of features

\textit{ISAC} demonstrated these features . . .

1. \textbf{interactive, stepwise problem solving}
 - like traditional paper&pencil work
 - like learning to play chess on a computer

2. \textbf{underlying knowledge is transparent}
 - all math knowledge in traditional notation
 - students can investigate to any depth anytime

3. \textbf{covers all of (applied) mathematics}
 - problem classes need formal specification and method
 - e.g. "beding lines", "application of inverse Z-transformation", etc

. . . supported by Computer-Theorem-Prover technology.
Review of features

ISAC demonstrated these features . . .

1. **interactive, stepwise problem solving**
 - like traditional paper & pencil work
 - like learning to play chess on a computer

2. **underlying knowledge is transparent**
 - all math knowledge in traditional notation
 - students can investigate to any depth anytime

3. **covers all of (applied) mathematics**
 - problem classes need formal specification and method
 - e.g. "beding lines", "application of inverse Z-transformation", etc

... supported by Computer-Theorem-Prover technology.
Outline

1. A new generation of educational math software
 Early birds
 Expected features

2. A prototype of the new generation
 Demonstration
 Review of features

3. Discussion
Thank you for attention!

Opinions? Questions?