On Analogies between Geometry and Algebra on Computers

Possibilities for Joint Development GeoGebra – ISAC?

Walther Neuper

Institute for Softwaretechnology
Graz University of Technology

GeoGebra Conference,
Hagenberg Jul.09
Outline

1. Analogogies in CAS and DGS
 - Analogies: Steps in Geometry – Steps in Algebra
 - A Program Drawing an Ortho-Center
 - A Program-Interpreter for “Guided Interaction”

2. Demo: Guided Interaction in Algebra

3. Joint Development GeoGebra – ISAC?
Outline

1. Analogies in CAS and DGS
 - Analogies: Steps in Geometry – Steps in Algebra
 - A Program Drawing an Ortho-Center
 - A Program-Interpreter for “Guided Interaction”

2. Demo: Guided Interaction in Algebra

3. Joint Development GeoGebra – ISAC?
A step propagates a Calculation/Construction by adding a new Term/geomtric object (GeO)

\[
\text{step} : \text{Context} \times \text{State} \times Pst \times \text{Interact} \rightarrow \text{Context} \times \text{State} \times Pst \times \text{Term} \\
\text{step} : \text{Context} \times \text{State} \times Pst \times \text{Interact} \rightarrow \text{Context} \times \text{State} \times Pst \times \text{GeO}
\]

where

\(Pst = Program \times (\text{Set of Locations}) \)

\(\text{Interact} = \)

1. **Next** by system
2. **Rule** by user
3. **Term** by user

\(\) in Calculation \(\) in Construction

Walther Neuper
Models of Mathematics
Three Kinds of Steps in Geometry – in Algebra

A **step** propagates a Calculation/Construction by adding a new Term/geometric object (*GeO*)

\[
\text{step} : \text{Context} \times \text{State} \times Pst \times \text{Interact} \longrightarrow \text{Context} \times \text{State} \times Pst \times \text{Term} \\
\text{step} : \text{Context} \times \text{State} \times Pst \times \text{Interact} \longrightarrow \text{Context} \times \text{State} \times Pst \times \text{GeO}
\]

where

\[
Pst = \text{Program} \times (\text{Set of Locations})
\]

\[
\text{Interact} = \\
1. \quad \textbf{Next} \; \text{by system} \quad \text{Next} \\
2. \quad \textbf{Rule} \; \text{by user} \quad \text{Rule} \\
3. \quad \textbf{Term} \; \text{by user} \quad \text{GeO}
\]

in Calculation in Construction
1 Analogogies in CAS and DGS
 - Analogies: Steps in Geometry – Steps in Algebra
 - A Program Drawing an Ortho-Center
 - A Program-Interpreter for “Guided Interaction”

2 Demo: Guided Interaction in Algebra

3 Joint Development GeoGebra – ISAC?
These programs *stepwise* create/check the construction . . .

program OrthoCenter P_1 P_2 P_3 =
M = let (l_1 = Bisector P_1 P_2 and l_2 = Bisector P_2 P_3)
or
 (l_1 = Bisector P_1 P_2 and l_2 = Bisector P_1 P_3)
or
 (l_1 = Bisector P_1 P_3 and l_2 = Bisector P_2 P_3)
in intersect_2 l_1 l_2

program Bisector P_1 P_2 =
l = let c_1 = Circle (P_1, Distance P_1 P_2);
c_2 = Circle (P_2, Distance P_1 P_2);
(Q_1, Q_2) = intersect_1 c_1 c_2
in make_line Q_1 Q_2

... without any input-/output statements ???.
These programs **stepwise** create/check the construction . . .

program OrthoCenter P_1 P_2 P_3 =
M = let (l_1 = Bisector P_1 P_2 and l_2 = Bisector P_2 P_3)
or
 (l_1 = Bisector P_1 P_2 and l_2 = Bisector P_1 P_3)
or
 (l_1 = Bisector P_1 P_3 and l_2 = Bisector P_2 P_3)
in intersect_2 l_1 l_2

program Bisector P_1 P_2 =
l = let c_1 = Circle (P_1, Distance P_1 P_2);
c_2 = Circle (P_2, Distance P_1 P_2);
(Q_1, Q_2) = intersect_1 c_1 c_2
in make_line Q_1 Q_2

... **without any input-/output statements ???**.
Outline

1. Analogies in CAS and DGS
 - Analogies: Steps in Geometry – Steps in Algebra
 - A Program Drawing an Ortho-Center
 - A Program-Interpreter for “Guided Interaction”

2. Demo: Guided Interaction in Algebra

3. Joint Development GeoGebra – ISAC?
Automatically Generated “Guided Interaction”

- input/output done by **side-effects** of (functional !) program
- side-effects handled by a **program-interpreter**
- the program-interpreter **guarantees correctness** of steps
- program-interpreter serves a dialog-guide
- we have **separation of concerns**:
 - math-programmer concentrates on math (no in/output)
 - dialog-programmer is not concerned with math details
Automatically Generated “Guided Interaction”

- input/output done by side-effects of (functional !) program
- side-effects handled by a program-interpreter
- the program-interpreter guarantees correctness of steps
- program-interpreter serves a dialog-guide
- we have separation of concerns:
 - math-programmer concentrates on math (no in/output)
 - dialog-programmer is not concerned with math details
Automatically Generated “Guided Interaction”

- input/output done by **side-effects** of (functional !) program
- side-effects handled by a **program-interpreter**
- the program-interpreter **guarantees correctness** of steps
- program-interpreter serves a dialog-guide
- we have **separation of concerns**:
 - math-programmer concentrates on math (no in/output)
 - dialog-programmer is not concerned with math details
input/output done by \textit{side-effects} of (functional !) program

side-effects handled by a \textit{program-interpreter}

the program-interpreter \textit{guarantees correctness} of steps

program-interpreter serves a dialog-guide

we have separation of concerns:

- math-programmer concentrates on math (no in/output)
- dialog-programmer is not concerned with math details
Automatically Generated “Guided Interaction”

- input/output done by side-effects of (functional !) program
- side-effects handled by a program-interpreter
- the program-interpreter guarantees correctness of steps
- program-interpreter serves a dialog-guide
- we have separation of concerns:
 - math-programmer concentrates on math (no in/output)
 - dialog-programmer is not concerned with math details
Possibilities for Joint Development GeoGebra – *ISAC*

1. Share **language** for guided user-interaction?
 - + module for user-guidance?
 - + user model?
 - + learning theory (knowledge space theory, …)?

2. Integrate **whole** *ISAC*?

3. Share *ISAC*’s **algebra-engine** (instead of present CAS)?